
MMMDE: Workshop on
Mathematical Models for Model-Driven Engineering

(Read MMMDE as “triple em dee e”)

Zinovy Diskin∗, Vadim Zaytsev†, Rick Salay‡, Bernhard Schätz§,
∗Department of Computing and Software, McMaster University, Canada,

∗Department of Electrical and Computer Engineering, the University of Waterloo, Canada,
†Instituut voor Informatica, FNWI, Universiteit van Amsterdam, The Netherlands,

‡Department of Computer Science, University of Toronto, Canada,
§Institut für Informatik, Technische Universität München, Germany,

§Software & Systems Engineering Department, fortiss GmbH, Germany,
∗diskinz@mcmaster.ca, †vadim@grammarware.net, ‡rsalay@cs.toronto.edu, §schaetz@informatik.tu-muenchen.de

Abstract—Software engineering (SE) strives to learn
from matured engineering disciplines, such as mechanical
and electrical engineering (physical engineering, PE), and
MDE is an essential step in this direction. Mathematical
models are fundamental for PE, but should it be so for SE?
What are similarities and differences in the development
and use of mathematical models in SE vs. PE? How can
SE and MDE benefit from a better understanding of these
similarities and differences? These questions become even
more challenging when we recognize that mathematical
modelling and formalisation are not identical (although
closely related), and the abundance of formal models in SE
may actually hide the lack of mathematical models with
all its negative (but perhaps negligible?) consequences.

Questions above are seldom discussed in the MDE
literature, but we believe they deserve special attention.
The MMMDE Workshop aims at gathering together MDE
experts who are concerned with developing mathematical
foundations for MDE, understanding the role of math-
ematical modelling in engineering in general and SE in
particular, and with relating these general thoughts to
practical MDE problems. We want to “test the waters”, and
try to solidify broadly formulated concerns outlined above
into several well-focused research questions or directions.

I. MOTIVATION AND SCOPE

There are essential similarities and essential differ-
ences between PE and SE, which essentially influence
the value and roles of mathematical models. Below we
present several observations about the subject (one sub-
section per observation), and the corresponding questions
that we think are useful to discuss at the workshop.

Observation 0: Luxury vs. Necessity

While mathematical modelling is a commonplace
practice in PE, SE can (arguably) survive without mathe-
matical models. Indeed, building a bridge or a car without
an a priori analysis would be too costly, and hence their
mathematical modelling is a must. In contrast, testing and
debugging can (pretend to) replace modelling, analysis
and other mathematical means of providing correct-by-
construction software. This leads to the following major
question: what should a mathematical model provide to
be accepted and used in SE?

Observation 1: Verification vs. Design

In PE, mathematical models are used for both check-
ing the design and suggesting the design (Fig. 1 shows
how it works). In SE, checking seems to be understood
and exploited much more than suggesting. This distinc-
tion is the more so surprising as design in SE is much
less bounded by external physical restrictions than in PE.
Perhaps, this is a sign of the lack of mathematical rather
than formal models in SE (see the next observation).

Verification 

Design 
pattern 

Fig. 1. From verification to design

mailto:diskinz@mcmaster.ca
mailto:vadim@grammarware.net
mailto:rsalay@cs.toronto.edu
mailto:schaetz@informatik.tu-muenchen.de


Observation 2: Mathematical vs. Formal

Discrete domains (prevalent in SE) are much better
amenable to formalisation than continuous ones (in PE);
moreover, in design models, the object to be formalised
(code) is itself a formal object. This may lead to an
abundance of formal models in a typical SE process, but
formal models are not necessarily mathematical models.
An assembly program or byte code are formal objects,
but they need mathematical models of their intended se-
mantics if we are interested in understanding what these
programs do on the specification level beyond sequences
of machine instructions. Similarly, a Java program is a
formal (or almost formal) but not a mathematical object
if we are looking for a higher-level specification beyond
sequences of programming operators. In a sense, the
very non-trivial activity of reverse engineering can be
seen as a transition from the formal to the mathemat-
ical world. On the other hand, quasi-mathematical but
semi-formal models are widely used in PE. Of course,
true mathematical models are themselves formal, but
the benefits they provide often go beyond formalisation
as such: specification and design patterns, consistent
conceptual frameworks and terminological and notational
frameworks based on them, ways of thinking about and
understanding the domain are typical implications of
mathematical rather than just formal modelling.

The differences between mathematical and formal are
not always well understood in SE and MDE too; the
latter often lacks mathematical models but the problem
is not recognised as mathematical models are substituted
by formal ones.

Observation 3: From Engineering to Physical to Mathe-
matical to Formal

An important facet of the issue is how to bridge
the (enormous) gap between engineering thinking and
intuition on the one side, and mathematical formalisms
on the other. Classical PE models like a pendulum
and a mass hanging from a spring in mechanics, a
bending beam and a shell in mechanics of materials, an
RCL-contour or the entire electrohydraulic analogy in
electricity are intuitive and manageable by an average
PE-engineer, but each of them encapsulates fairly com-
plex mathematical and bulky formal structures. These
models can be seen as simple interfaces to the underlying
mathematical structures. In fact, the transition from the
engineering domain to its formalisation is mediated by a
whole chain of models provided by different disciplines:

from Engineering theories in Mechanics/Electricity to
General Physics to Theoretical Physics to Mathematical
Physics (only here we are in the realm of mathematics)
to Numerical Methods, which employ their own termi-
nological, conceptual, and mathematical frameworks.

We have somewhat similar “physical” models bridg-
ing the gap in SE too: automata of different types, Petri
nets, grammars and rewriting systems of different types,
different sorts of tables providing interfaces to different
logics, control flow and data flow nets, dependence
graphs, and also class diagrams, ER-diagrams, statecharts
and message sequence charts constitute the “golden
modelling fund” of SE. There are, however, essential
differences between engineering models in PE and SE.
Some of the SE-models above are indeed engineering
interfaces to the underlying mathematics, others still
lack an agreed formal semantics. Also, it appears that
a typical MDE chain from engineering to mathematical
is shorter and seemingly more primitive than in PE: from
the engineering domain to an engineering model to its
formalisation in code.

Observation 4: Forests vs. Trees

Models in PE are integrated into systems—model
libraries, in which each model has its precisely defined
goals and application conditions. It seems that models
in SE are less integrated, and their applicability is less
accurately specified. Software engineers often tend to
master one modelling framework and supporting tooling,
and apply it as broadly as possible without too much
worrying about the very applicability of the framework
to a given domain problem. Models in PE are integrated
into “forests”, whereas models in SE look more like
isolated trees. For example, work on behaviour modelling
done with Petri nets is not well related to work on
behaviour modelling done with statecharts, the same for
structural modelling with ER-diagrams, class diagrams
and ontologies. Even worse is that the isolationism of
models gives rise to the isolationism of the respective
communities, and the problem becomes unmanageable.

Observation 5: The MDE Paradox

Model-driven engineering placed modelling and mod-
els at the centre of software development process. Re-
searchers and practitioners learned to appreciate abstrac-
tion by observing the technical benefits it provides in
the context of model-based requirement engineering,
software design, and testing. However, even though this



appreciation of abstraction was widely promoted and
praised, the use of actual mathematical models did not
receive significant attention. While the model-centred
MDE culture requires a greater mathematical precision
and semantic accuracy, many modelling theories have
limitations that are left unexplored or unknown to soft-
ware developers, and a typical MDE tool can place
an advanced technology on top of surprisingly weak
semantic foundations. The result is that MDE enabled
us to create, manipulate and use many kinds of models
with extreme ease and effectiveness, but also brought
to life many implicitly inconsistent or/and inadequate
to their intended goals models, which often require
manual adjustment after their automatic processing. By
significantly increasing the demand for semantic and
mathematical accuracy in modelling and models, but
leaving the latter on basically the same level as before
the pre-MDE era, MDE created a paradoxical impression
of a decreased level of mathematical support in software
development.

Observation 6: Categorical Thinking

Category theory (CT) is a mathematical theory of
structures, and hence is an obvious candidate to mediate
the transition from a structurally complex engineering
domain to its mathematical models to formalisation.
Moreover, categorical modelling by its very nature tends
to integrate mathematical models into a consistent math-
ematical framework. However, CT is not a part of a
common SE curriculum, its methods are (although quite
natural but) unusual, and there are no good textbooks
suitable for a software developer; the result is that CT
is often considered as being excessively complicated. It
seems there are no good and fast ways to remedy the
problem, whose deeply rooted conservative educational
and cultural factors hinder its technical solution.

II. OBJECTIVES AND THE INTENDED AUDIENCE

Observations above show enough differences in the
value and application of mathematical models in PE and
SE to justify (re)thinking and discussing the interaction
of mathematical modelling and MDE and SE. Such a
discussion seems need greater clarity in understanding
the core issues than we have today — hence, this
workshop.

The MMMDE Workshop aims at gathering together
MDE experts who are concerned with developing math-
ematical foundations for MDE, understanding the role

of mathematical modelling in engineering in general
and SE in particular, and with relating these general
thoughts to practical MDE problems. We want to “test
the waters” and try to solidify broadly formulated con-
cerns above into several well-focused research questions
or directions, and perhaps make them accessible to the
community via a publication. Perhaps, we could continue
the workshop with the next edition of MoDELS in a more
traditional setting with paper submission and reviewing
process.

The intended audience is assumed encompassing
three main groups:

• MDE researchers and practitioners with an affinity to
mathematical and formal methods.

• Applied mathematicians or computer scientists apply-
ing (or wishing to apply) their research skills to MDE
and having trouble in bridging the conceptual gap.

• SE/MDE practitioners who seek help in mathematical
techniques but do not want to pursue mastery in the
underlying theories.

III. TENTATIVE SCHEDULE

The workshop will consist of three parts: introduction
and the keynote (first session, 9:00–10:20); the invited
talks (10:45–12:00 and 13:15–15:00) and the panel with
conclusive discussion (15:30–17:00). A tentative sched-
ule is below (each talk slot assumes 5 minutes for a brief
discussion).

Time Presenter Topic
9:00–9:20 Organisers Introduction and goals
9:20–10:15 Tom Maibaum Why Modelling Succeeds in En-

gineering: a Cookbook Approach
to Modelling in MDE

10:15–10:45 Break
10:45–11:15 Don Batory 3x = 12 means x = 6: Ein-

stein’s First Equation
11:15–11:45 Harald König Why do more elaborate IDEs

lead to worse software?
11:45–12:00 Discussion Free exchange
12:00–13:00 Lunch
13:15–13:30 Richard Paige A set of provocative statements
13:30–14:00 Martin Gogolla Observations on Support for

Logical Reasoning on UML
Models

14:00–14:15 Bran Selic Think or Swim: On Engineering
Methodology

14:15–14:30 Rick Salay Why does math in SE make work
harder when in other engineering
disciplines it makes it easier?

14:30–15:00 Zinovy Diskin What’s bad with a bad mathemti-
cal model?

15:00–15:30 Break
15:30–16:30 Panel with Bran

Selic, Don Batory,
Tom Maibaum,
Harald König

What should a mathematical
model provide to be accepted
and used in SE?

16:30-17:00 General discussion + Conclusions “What’s next”?


